

Iot4Health: Uncertainty Prediction for Personalized Health

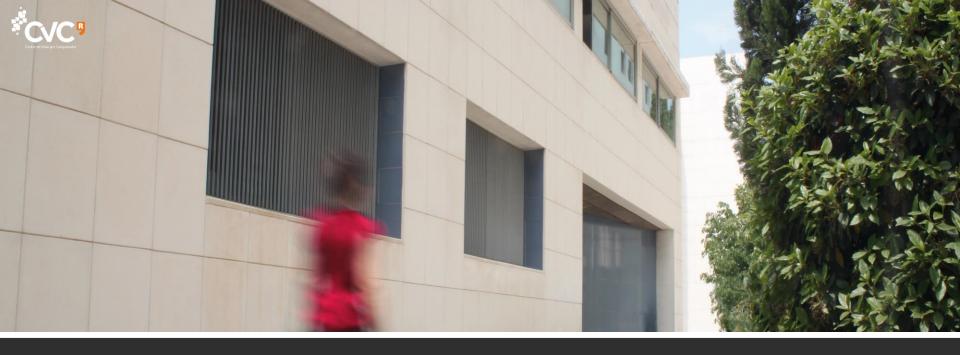
Debora Gil, debora@cvc.uab.es, www.iam.cvc.uab.es

Computer Vision Center

Imaging Knowledge

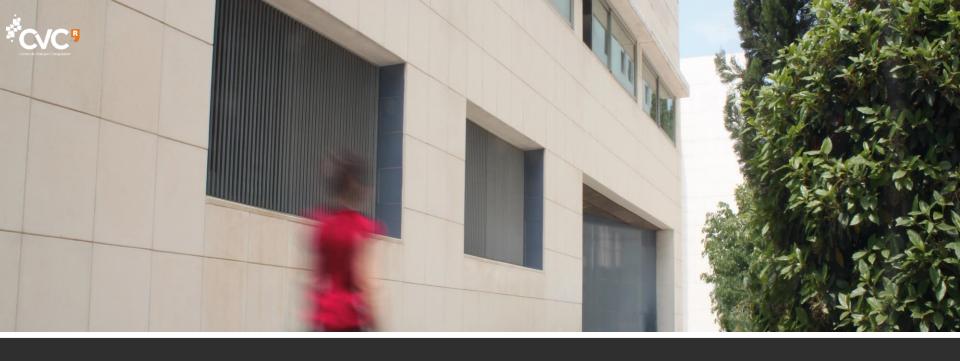
Income

23 Years +130 Staff 40 +2000 Diffusion/year **Followers**



Research and Innovation

+50 Publications/year



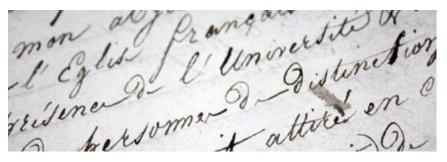
Technological Transfer

+40 New Clients/year

11 Spin-offs

€1,0 M€/year Income

Areas of Excellence



Health and well-being

Computer assisted diagnosis, intervention and planning; Well-being and ambient assisted living.

Mobility and transport

Advanced driving systems and autonomous driving; Virtual worlds for ADAS; Unmanned Aerial Vehicles.

Intelligent Content and Media

Cultural heritage (AR/VR) Reading Systems – Document analysis Surveillance

Industry 4.0

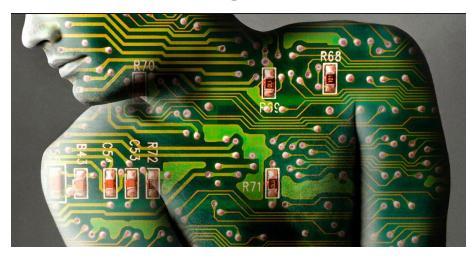
Quality control AR/VR technologies for industry 4.0 Robotic Vision

Courses

Data Science Engineering-UAB

Master in Computer Vision-UAB-UOC-UPF

Master in Internet of Things for eHealth-UAB



(on-line) Master in Big Data in Health-UAB-Tauli

Iot4Health: Uncertainty Prediction for Personalized Health

- 1. Introduction
- 2. State-of-Art AI Methods
- 3. Challenges and Hints

Introduction

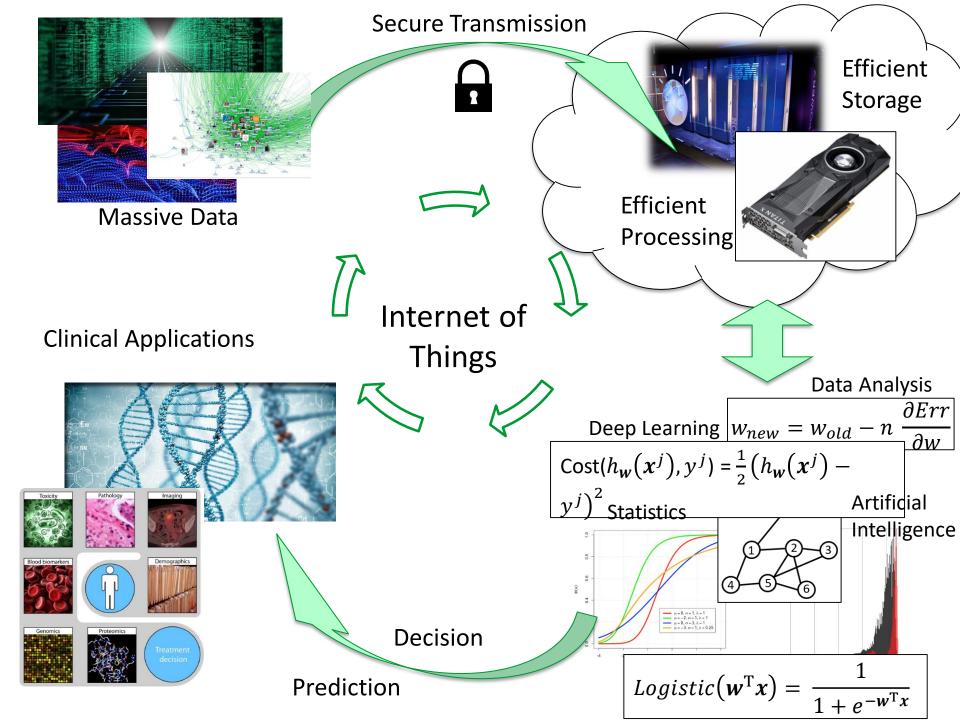
Clinical Issues

SUPPORT	GOAL	USE CASES
Diagnosis	Determine Lesion Pathology (degree of malignancy)	Cancer Diagnosis in 3D scans, in-vivo Diagnosis using endoscopy
Treatment	Predict Treatment Outcome/ Select Best Treatment	Personalized Cancer Treatments, Resynchronization Therapies
Intervenction	Planning / Guiding in Opertating Room without Altering Protocols	Biopsy using Endoscopy, Pace-maker to restore cardiac function

Standard Approach

Most clinical decisions are taken after human-based analysis of patient's data (scanners, blood analysis,) that requires highly specialized experts

- Inter and intra observer variability
- Analysis might be inconclusive
- Test repetition
- Patient anxiety



AI Support Systems

Computational systems that support in clinical decisions. Though final decision is taken by clinicians, AI systems can :

- Analyze data in systematic way
- Standardize criteria
- Reduce time to reach conclusion

- Variability across experts
- Non-experts training curve
- Inconclusive results

Computational Tasks in Clinical Support Systems

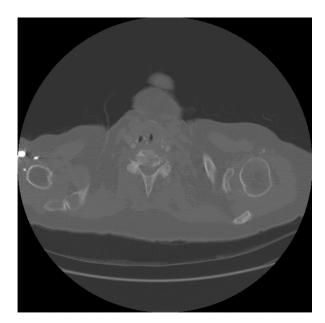
Systems manage and analyze data acquired from patients using medical devices: (3D) Radiological Data, Endoscopic Videos.

Three main tasks:

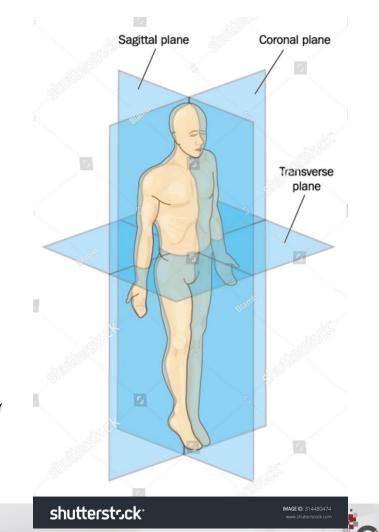
- 1. Lesion Localization
- 2. Lesion Segmentation
- 3. Lesion Characterization

Radiological Data

3D Volumes acquired from Magnetic Resonance (MR), Positron Emission Tomography (PET), Computerized Tomography (CT).

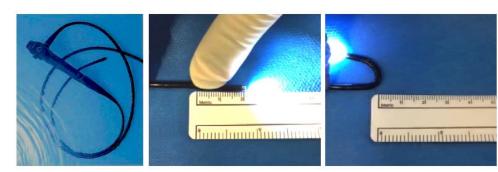


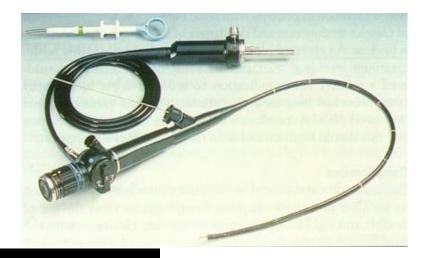
Thorax CT-scan Short Axis View



Endoscopic Data

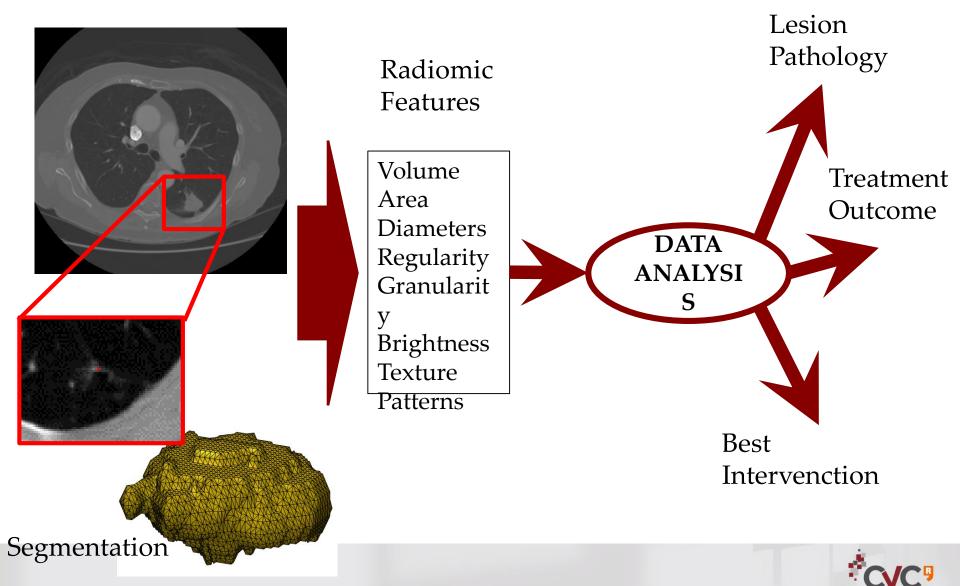
Videos of patient interior organs





Lesion Characterization

Detection



AI Approach

- Clinical issues are considered as a classification problem.
- Lesions/patients are grouped into categories specific for each problem:

CLINICAL PROBLEM	GLOAL	IA APPROACH
Diagnosis	Lesion Pathology	Classify into bening, malign
Treatment	Treatment Outcome	Classify into responder, non-responder

AI Approach

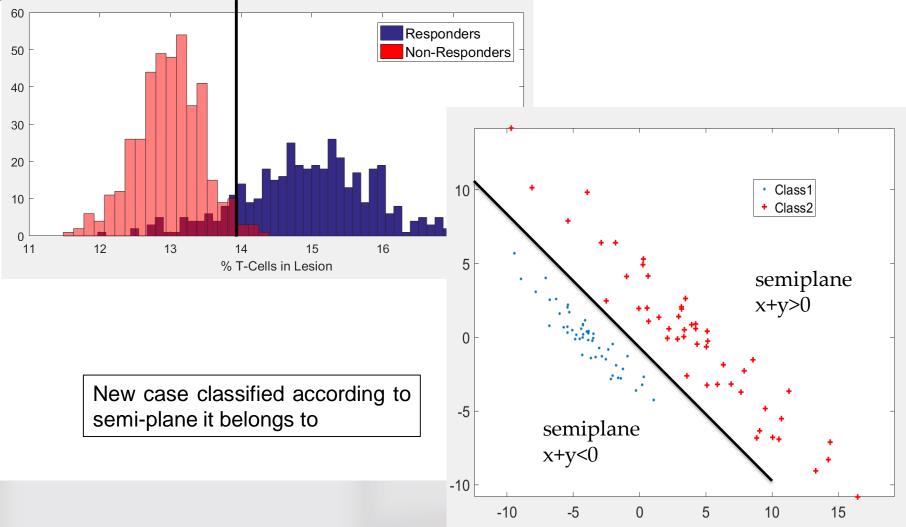
Cases (lesions, patients) are classified according to values of measures extracted from clinical data

Compute (learn) the ranges (extreme values) of each measure that best differentiate (discriminate) each category:

CLINICAL PROBLEM	MEASURE	IA APPROACH
Diabetes Diagnosis	% Glucose in Blood	50<%<75→ Grade A Diabetes 75<% → Grade B Diabetes
Cancer Treatment	% Inmune Cells in Lesion	%<50 → Non-Responder

AI Approach

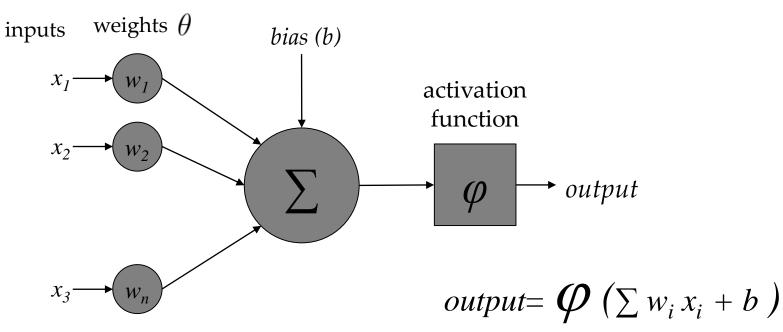
Separation in n-dim space with best compromise across classification errors using using probabilistic distribution of training population with known result



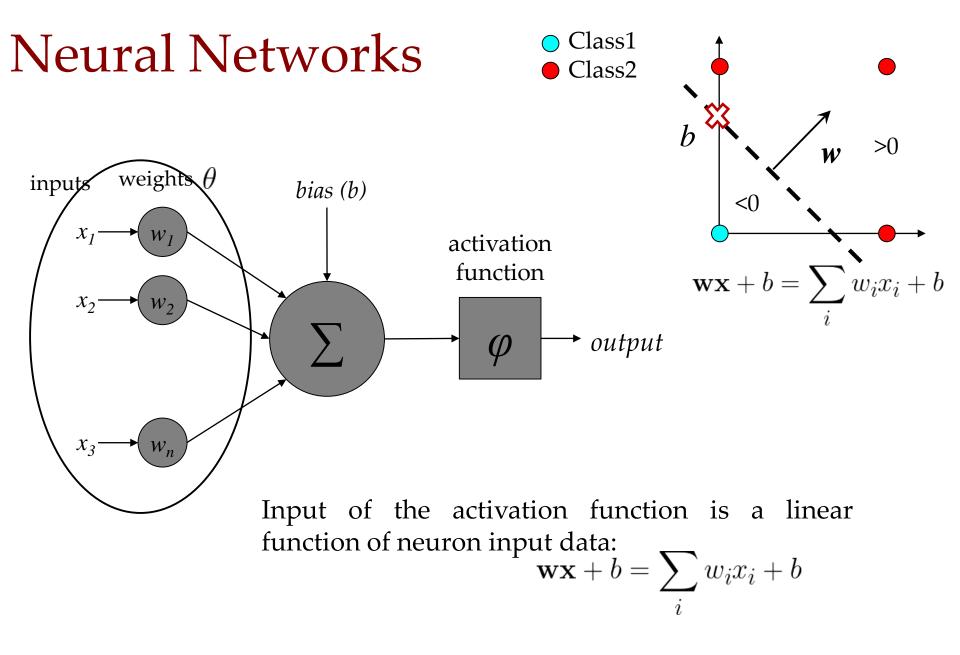
State-of-Art Al Methods

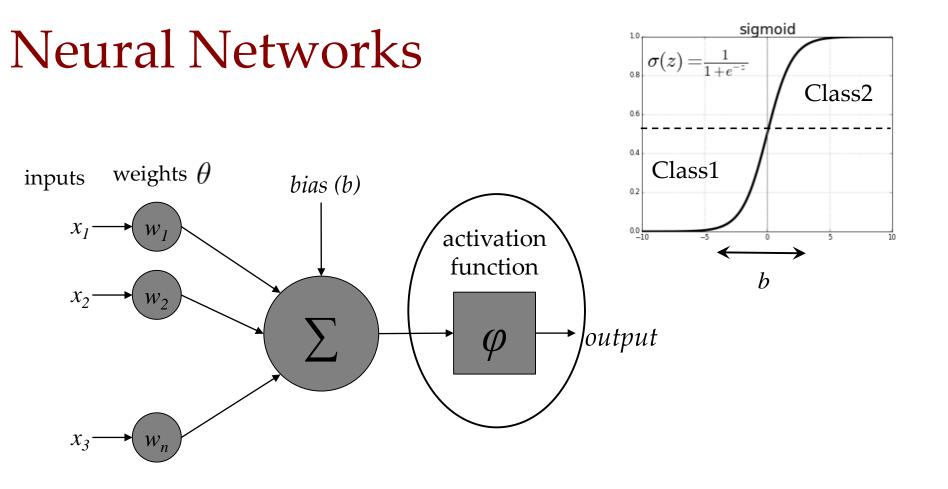
Perceptron

• Structure of an artificial neuron



Frank Rosenblatt (1957)

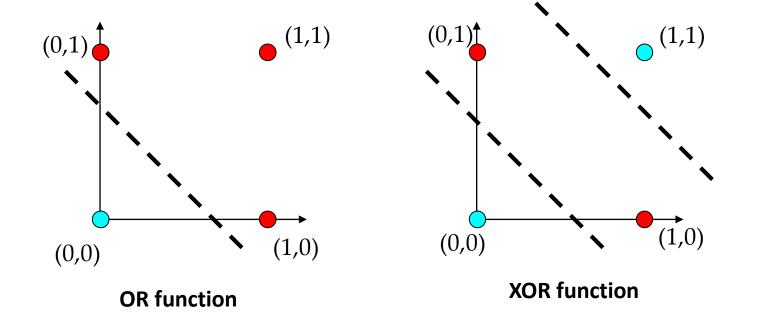




Linear classifier is modulated by (non-linear) activation function: sigmoid, tanh, ReLU, etc.

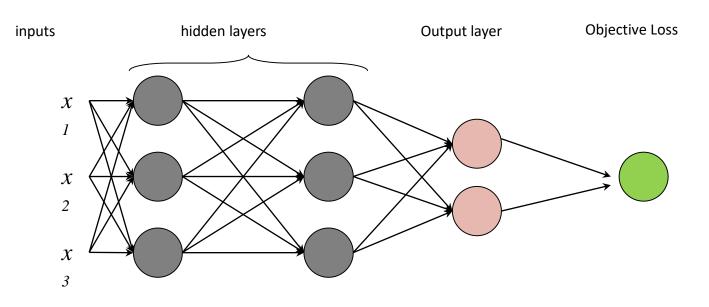
b acts like a threshold on the activation function

Intrinsically, neural netwroks are linear classifiers. Problems with solving non-linear problems



Multi Layer Perceptron (MLP)

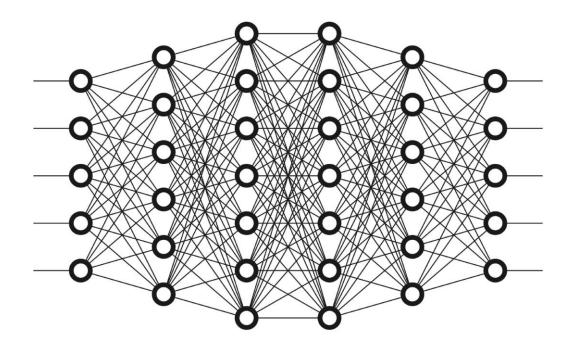
• Connect neurons in multiple layers to model non-linear functions



Each hidden layer models an hyperplane

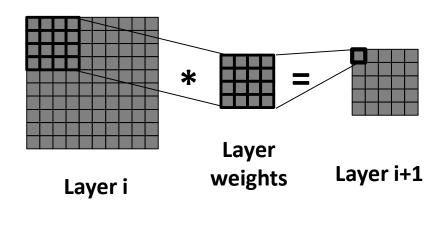
Deep Neural Network

• Hierarchy of multiple layers of artificial neurons that processes information using non-linear transformations.

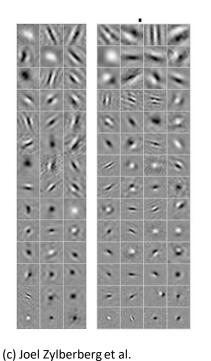


Convolutional Neural Network (CNN)

• Instead of modelling the whole signal, neurons model signal in a region (act as convolution filters)



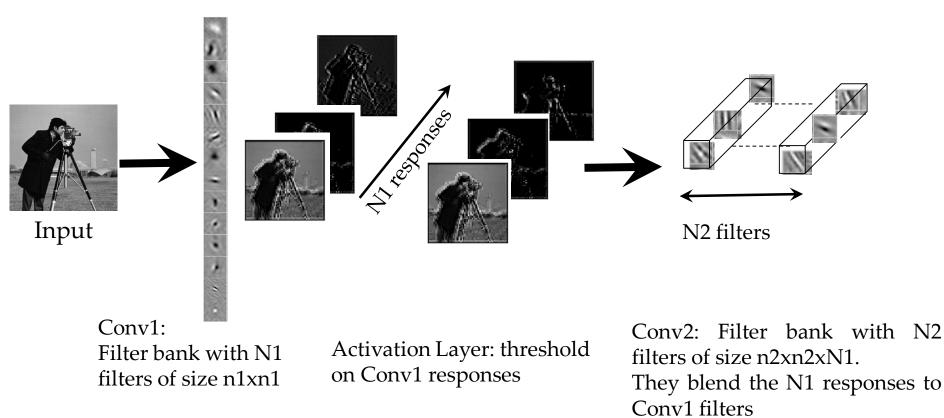
Biologically inspired (Receptive Fields of macaque V1 neurons)



LeCun (1990s)

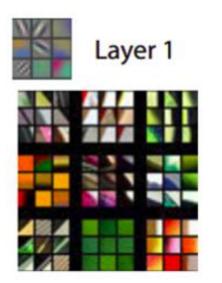
Convolutional Neural Network (CNN)

- Combine several convolution-activation layers
- After some convolution-activation layers, signal is downsampled

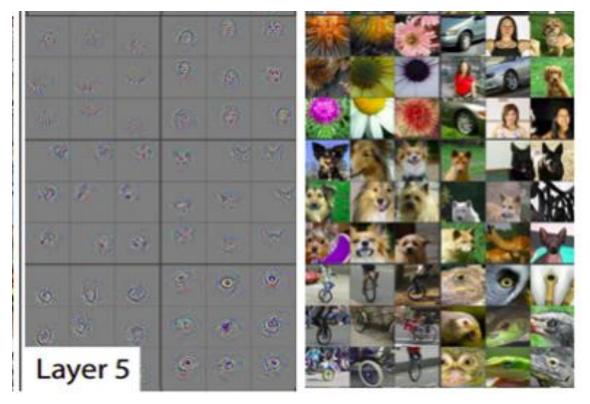


Convolutional Neural Network (CNN)

• Hierarchy of neuron layers that mimic the brain and provide a multiescale decomposition ("wavelet"-like) of input data



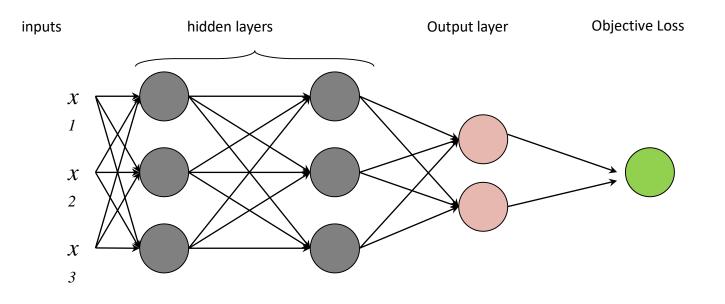
First layers provide low-level local descriptors



Deeper layers provide high-level global descriptors

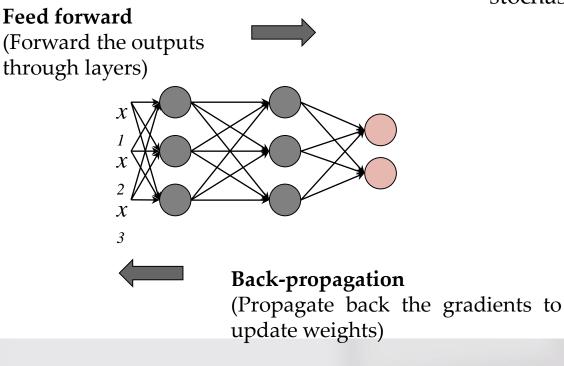
Training/Learning

• Network weights are learned (adjusted) to optimize loss: cross entropy (classification), square difference (representation spaces)



Back Propagation

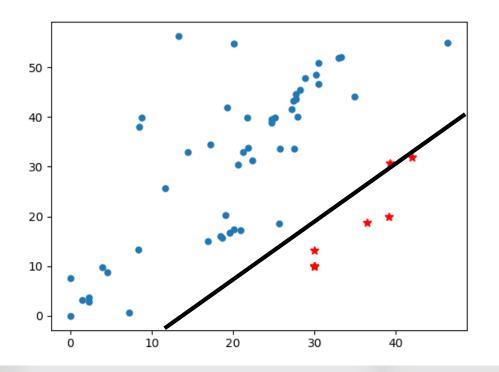
- Optimization by (Stochastic) Gradient Descent Scheme
- Convergence depends on:
- initial weights
- convexity of the loss function
- population sampling (batch) for stochastic gradient



Challenges & Hints

Challenges in Health Problems

Small sample size (SSS) unbalanced problems with several sources of uncertainty (variability) in data like acquisition parameters or intra-observer variability in annotations



Extreme values become highly influential

Model has low generalization (reproducibility) power (overfiting)

Approaches to Challenges

Techniques to avoid them

• Sampling Strategies:

- Data Filtering
- Data Augmentation

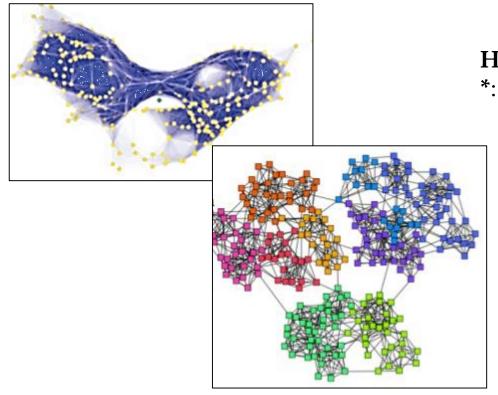
• Uncertainty Modelling:

- MultiTask Learning
- MC-Dropout
- Feature Uncertainty Measures

Sampling Strategies

Data Filtering

Usual approaches detect outliers using probabilistic global descriptions of population sample \rightarrow Bad pose in SSS problems



Hint

Use algebraic topology and analysis of communities in social networks to provide a local description of feature space

* This is on-going research under project ToPiomics funded by the ATTRACT project under EC Grant Agreement 777222

Sampling Strategies

Data Augmentation

• Alter training images using known transformations

Original

Affine transformations (scale, rotate, translate)

Color shifts

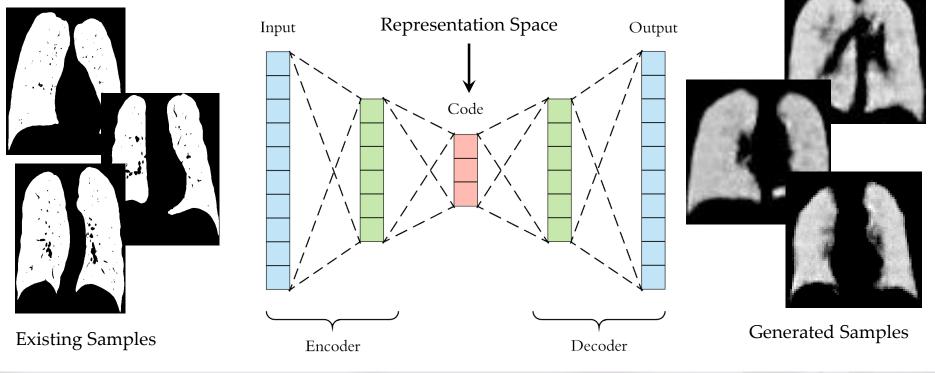
Flip

- Network will be invariant to the set of transformations
- Augmented data is highly correlated

Sampling Strategies

Data Augmentation

Hint Generate new data from existing data sets using Auto-Encoder*: network to define a low dimensional representation space and statistical model (PCA)



* This is on-going research under project Up4Health funded by the Spanish Government under RETOS coordinated project RTI2018-095209-B-C21

MultiTask Learning

- Problem: neurons adapt too much to inputs
- Solution: Learn different tasks simulateously

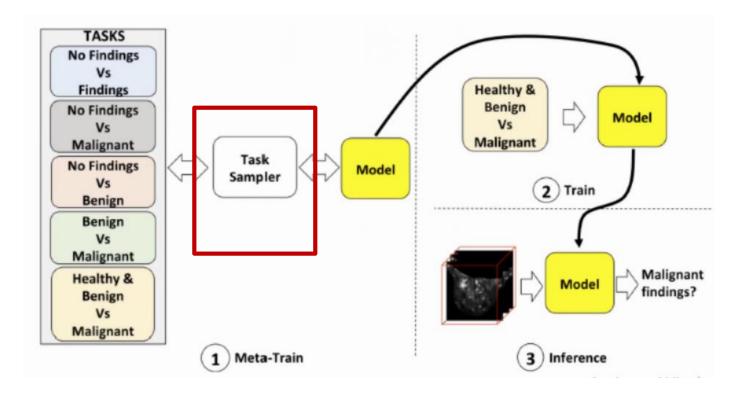
TASKS **No Findings** Vs Findings **Healthy &** Benign **No Findings** Model Vs Vs Malignant Malignant Task **No Findings** Model Sampler Vs 2) Train Benign Benign Vs Malignant Malignant Healthy & Model findings? Benign Vs Malignant Meta-Train Inference 1 3

Fig. 1: The model is first meta-trained using several tasks containing relatively small training sets. The meta-trained model is then used to initialize the usual training process for breast screening (i.e., healthy and benign versus malignant). The probability of malignancy is estimated from a forward pass during the inference process.

© Maicas, MICCAI 2018

MultiTask Learning

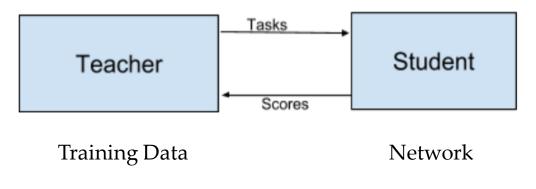
• Criteria for task selection during training



MultiTask Learning

- Criteria for task selection during training
 - Random
 - o All
 - Teacher-Student Curriculum Learning

Sample tasks that can achieve a higher improvement on their performance



Hinton (et al.), 2012

Dropout

- Problem: neurons adapt too much to inputs
- Solution: drop out

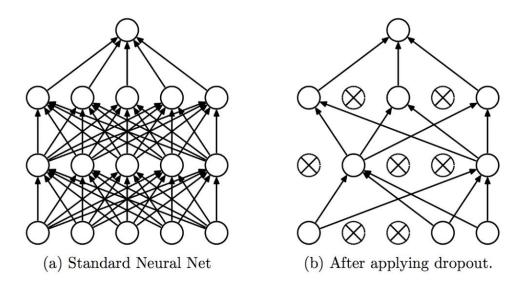


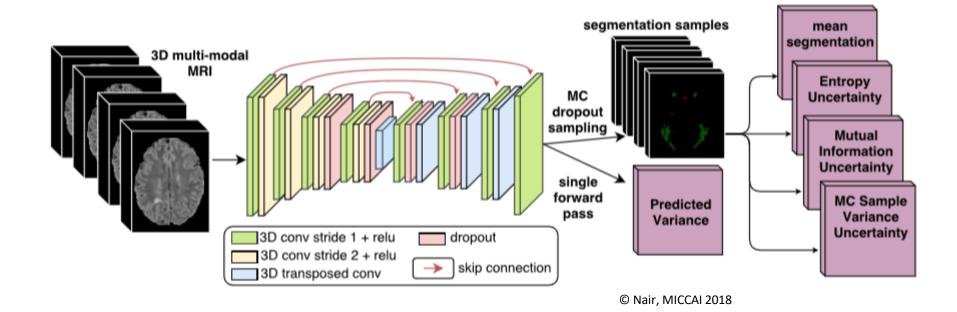
Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right: An example of a thinned net produced by applying dropout to the network on the left. Crossed units have been dropped.

Dropout

Gal, Y, 2016, Nair 2018

Ο

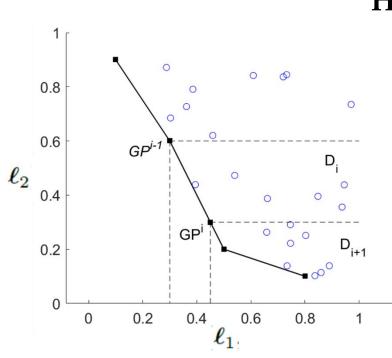
• Allows estimating neuron variability (Bayesian networks) and define measures of output uncertainty



Centre de Visió per Computador

Feature Uncertainty

• Estimated uncertainty is used as post-processing filter to either select reproducible features or define classifier cut-off threshold



Hint *: Incorporate uncertainty measures during training to obtain reproducible netwroks

Use a Pareto-like multi-task strategy for a multi-objective approach

* This is on-going research under project Up4Health funded by the Spanish Government under RETOS coordinated project RTI2018-095209-B-C21

Thanks 4 your time!!!!

Debora Gil, debora@cvc.uab.es, www.iam.cvc.uab.es

Generalitat de Catalunya

